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Integer Points ony2 - 7X + 10 

By Andrew Bremner and Nicholas Tzanakis 

Abstract. The 26 integer solutions of y2 = X3 - 7x + 10 are found and an error in a published 
table of fundamental units is corrected. 

0. In 1953 Wiman [21] discovered, by a simple application of the chord and 
tangent process, that the cubic curves 

(0.1) y2 x 3-7x + 10, 

(0.2) y2 X3 - 172x + 820, 

(0.3) y2 x3 - 172x+ 505, 

(0.4) y2 X3 - 112x + 2320, 

contain, respectively, 24, 60, 58, 70 integer points (in pairs, symmetric about the 
x-axis). The curve (0.1) occurs again in Hartshorne [10, Chapter IV, Ex. 4.18], where 
it is pointed out that it contains at least 26 integer points. It is the aim of the present 
paper to settle the question of the integer points on (0, 1); and in fact we show that 
there are precisely 26 such points. 

It is apparent that the groups of rational points on curves (0. 1)-(0.4) will probably 
have several generators. Using the arithmetic of the field Q(p), p3 -7p + 10 0 
(see Section 1), one can perform the standard 2-descents (see Cassels [6] or Birch and 
Swinnerton-Dyer [4]) on the curve (0.1) to determine that its rational Mordell-Weil 
group actually has rank 2, but the details are omitted. It seems plausible that the 
rank of the curves (0.2), (0.3), (0.4) is in each instance equal to 4, but this has not 
been specifically verified. 

It is perhaps also worth noting here the integer point on (0.4) given by 

(x, y) = (1645085185, 66724078854865) 

because of the large size of the coordinates; Lang [11], [12] has made some 
interesting conjectures on the size of integral points on the curvey2 = x3 + ax + b, 
in particular that for an integral point (xo, yo) then Ixo << max(I a , lb 2)k for some 
uniform k. The curve (0.1) has conductor 23 * 83 (see Tate [19] for a recipe on 
calculation of the conductor), rank 2, and 26 integer points, none of which, however, 
is particularly 'large'. Examples possessing a sizeable solution include: 

(i) the curve y2 = x3 - x + 1 of conductor 22 . 23, rank 1, and 12 integer points 
including (x, y) = (56,419). (This is the curve denoted 92c in the tables of Birch 
and Kuyk [3]; see also the review [MR 82g: 10037] by the first author of a paper by 
Sansone [16].) 
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(ii) The curve y2 = X3 - 4x + 1 of conductor 22 * 229, rank 2, and at least 22 
integer points including (x, y) = (1274,45473). (See Billing [2, Chapter IX, Ex. 1].) 

Recently, Mestre [14] has given an example of a curve of rank at least 12 with at 
least 320 integer points. 

The techniques used in this paper of using the arithmetic of the appropriate cubic 
extension to obtain finitely many equations of type (binary quartic form) = 1, and 
then disposing of the latter using Skolem's p-adic method, are well known and are 
described in Mordell [15, Chapters 27, 23]. The methods can always be applied to 
the equation y2 = X3 + ax + b, although in theory there is no guarantee of all the 
integer points being found. In practice, it is usually the case that such an equation 
can be resolved (given an enthusiasm for sometimes excessive arithmetic calculation). 

1. We work in the field Q(p), p3- 7p + 10 = 0. As an integer basis take (see 
Delone and Faddeev [8, Theorem II, p. 112]): 1, p, a = (2 - p + p2)/4, with the 
field discriminant being -83. It is straightforward to show that the class number of 
the field is 1, while in Section 5 we prove that E = 1 - a is a fundamental unit, 
thereby correcting an error in a table of Brentjes [5]. Equation (0.1) may be written 

(1.1) (x-p)(X2 + pX + p2 - 7) = y2 

and any common divisor of the two factors on the left-hand side must divide 
3p2- 7. Since Norm(3p2 - 7) = 16 * 83, we need the factorizations of the divisors 
(83) and (2). In the former case, it is easy to check that (83) = p23 where 

P8'3= (-9 + 2p + 5a) and P8'3= (-7 + 2p + 5a). For the factorization of (2) we 

need an element of odd index: such an element is p + a of index 1 with minimum 
polynomial t 3- 5t2 + 9t - 4. Accordingly, (2) = P2 P2 where P2 = (-2 + p + a) is 
a first-degree divisor, and p' = (3 - p - 2a) is a second-degree divisor. Now 
3p2 - 7 -9 + p + 4o is not divisible by eitherp83 orp2, and so (3p2-7) = P2P83* 

From (1.1) it follows that (x - p) = p'pW3a2 for an integral divisor a, and where 
without loss of generality i, j E {0, 1). However, if j = 1, then on taking norms we 
obtain y2 = 83 * (integer square), an obvious impossibility. We thus deduce the 
nondivisor equation 

(1.2) x- p= -2a)'(a + bp , k E {0,}, a, b, c E Z, 

with the upper sign when i + k 0_ mod 2 and the lower sign when i + k 1 mod 2 
(as seen by taking norms). There are four cases to be considered. 

Case I: (i, k) = (0,0). Now x - p = (a + bp + C(J)2 giving 

(1.3) x = a2 -2b2-4bc, -b2 + c2-2ab-4bc 1, 
4b2 + 3C2 + 2ac-2bc = 0. 

The third equation is easily solved by standard techniques (e.g. consider it as a 
second degree equation in b with discriminant which must be a perfect square). 
Suppose without loss of generality that c < 0; then it follows that a = 3m2 + mn + 
n2, b = mn, c = -2m2 for certain integers m, n. Substituting into the second 
equation at (1.3) gives m(4m3 + 2m2n - 3mn2 - 2n3) = 1, and, since without loss 
of generality m > 0, we have m = 1 and (2n + 3)(n2 - 1) = 0. Thus (m, n) = (1, 1), 
(1, -1) giving, respectively, (a, b, c) = (5, 1, -2), (3, - 1, -2) and (x, ?y) = 

(31, 172), (- 1,4). 
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Case II: (i, k) = (0, 1). Now x-p (-1 + )(a + bp + C)2 giving 

x =-a2+ 2C2-4ab-4bc, 3b2 + 4C2-2ab + 2ac-6bc = 1, 
a2 + 5b2 + 7C2 - 2ab + 4ac - 12bc = 0. 

As above, the third equation leads now to two possibilities: assuming that c > 0, we 
have, for certain integers m, n of opposite parity, either a = - 2n2 + mn, b = m2 + 

mn + n2, c = m2 + n2, or a =-m2 + 4mn - 3n2, b 3m2 + n2, c = 2(m2 + n2). 

In the first instance, substitution results in 

(1.4) m4 + 3m2n2 + 4mn3 + n4 1, 

while in the second instance, 

(1.5) n4 + 8n3m + 6n2m2 - 8nm3 + 9m4 = 1. 

In Section 2 it is shown that the only solutions of (1.4) with m, n of opposite parity 
are (m, n)= (1,0), (0, 1), (3, -4), leading, respectively, to (a, b, c) = (0, 1, 1), 
(-2, 1, 1), (-44, 13, 25) and (x, +y) = (-2,4), (2,2), (302,5248); and that the only 
solutions of (1.5) are ?(m, n) = (0, 1), (- 1,2) with corresponding (a, b, c) = 

(-3, 1,2), (-21,7, 10), and (x, +y) = (3,4), (67, 548). 
Case III: (i, k) = (1, 0). Now x - p = -(3 - p - 2a)(a + bp + CU)2 giving 

x = 3a2 + 8b2 + 12ab + 4ac + 8bc, -a2+ 2C2-4ab-4bc = 1, 
-2a2 - 6b2 - 4c2 - 4ab - 4ac + 4hc = 0. 

As before, the third equation leads to the two possibilities (on supposing b > 0): 
either a = -3m2 + 4mn - 3n2, b = m2 + n2, c = m2 - 2mn + 3n2, or a =-m2 

-5n2, b = m2 + n2, c = m2 - 2mn + 3n2, where m, n are relatively prime and of 
opposite parity. In the first instance we deduce 

(1.6) m4 + 8m3n-6m2n2-8mn3 + 9n4 =1, 

while in the second case 

(1.7) m4 + 18m2n' - 16mn' + n = 1. 

The above two equations are solved in Section 3. It is proved there that the only 
situation to (1.6) is ?(m, n) = (1,0), with corresponding (a, b, c) = (-3, 1,0) and 
(x, ?y) = (5, 10); and that the only solutions to (1.7) are +(m, n) = (1,0), (0, 1) 
with respective (a, b, c) = (-1,1,1), (-5,1,3) and (x, ?y) = (-3,2), (13,46). 

Case IV: (i, k) = (1, 1). Now x - p = (1 - a)(3 - p - 2a)(a + bp + CU)2 giving 

x = a2 + 8b2+ 4C2 + 4ab + 4ac, a2 + 6b2 + 6c2 + 4ac-8bc = 1, 

2b2 + 5C2 - 4ab + 2ac - lObc = 0. 

On supposing a + 2c > 0, the third equation leads to either a = m2 - 8mn + n2, 

b = 2(m2 + mn), c = 4mn, or a= -3m2 + 5n2, b = 2(m2 + mn), c = 2(m2-n2) 

where m, n are relatively prime and of opposite parity. In the first instance we may 
deduce 

(1.8) n4- 6n2m2 - 16nm3 + 25m4 = 1, 

and in the second instance 

(1.9) m4 + 16m3n + 42m2n2 + 32mn3 + 9n4-1. 
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These equations are solved in Section 4. It is shown that ? ((m, n) = (0, 1) is the only 
solution to (1.8), with (a, b, c) = (1, 0, 0) and (x, +y) = (1, 2); and that +(m, n) = 

(1,0),(2,-1) are the only solutions to (1.9), with (a, b, c) = (-3,2,2), (-7,4,6) 
and (x, y) = (9,26), (41,262), respectively. We have then proved the following 
result. 

THEOREM. The elliptic curve y2 = X3 - 7x + 10 has exactly 26 integral points, 
which are the following: 

(x y) (1,2), (2,2), (-3,2), (-1,4), (-2,4), (3,4), (5, 10), (9,26), 
(13,46), (31, 172), (41,262), (67,548), (302, 5248). 

2. The Solution of Eqs. (1.4) and (1.5). We work in the field Q(9), 94 + 392 + 49 
+ 1 = 0. By standard methods it is easy to prove that { 1, 9, 92, 93} is an integer 
basis with discriminant-24 - 83. In Section 6 it is shown that a pair of fundamental 
units in Q(O) may be taken as El = 9, E2 = 1 + 9. Then Eqs. (1.4) and (1.5) can be 
written, respectively, in the form 

(2.1) Norm(m - nO) = 1, 

(2.2) Norm((m + n) - (m - n)O) = 1, 

and so it suffices to find all solutions of just Eq. (2.1). We wish to work p-adically 
for an appropriate prime p, which in practice involves finding a prime p such that 
the coefficients of 92, 93 in EcrE, vanish modulo p as infrequently as possible for 
varying r, s. Primes p which split into first degree factors in Q(9) are particularly 
suitable for investigation since then the order of Ei modulo p has to divide p - 1, and 
the amount of checking of the coefficients of 92, 93 in 1 2 is relatively limited. In 
this particular instance p = 397 is a suitable prime. Direct (machine) calculation 
gives 

El _-1 - 397(46 - 123 - 1282 - 533) mod 3972 

= -1- 3974 , say; 

E396 =1 + 397(111 + 48 + 32192 + 7593) mod 3972 

= 1 + 39742, say; 

and the only values r, s with -99 < r - 99, - 198 <s s 198, such that the 
coefficients of 92 and 93 in E rEs are both divisible by 397, are given by: 

(r, s) ErEs 

(0,0 ) 1 

(2.3) (0,1) 1+9 
(1, 0) 9 

(4, -1) -1 - 39 
(-2,4) 3+40 

Write now 

m - n9 = E'E 
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and put u 198M + r, v = 396N + s, - 99 < r < 99, - 198 < s < 198 so that 

? (m - nO) = Ers(I + 397, )M(1 + 3970' 

=rCEsC(Ko + K0 + K202+K3 

where 

Ko=1+397(46M+1I1N)+3972(0+.., 

K1 = 397(-123M + 48N) + 3972( ) + **, 

K2 = 397(-128M+ 321N) + 3972() + 

K3 = 397(- 53M + 75N) + 3972( ) + . 

Since ?(m - nO) r,s mod 397, the only acceptable values of (r, s) are those 
listed at (2, 3). Now if (r, s) = (0, 0), then K2= 0 = K3, forcing 

(- 128M + 321N) + 397() + =0, 

(-53M + 75N) + 397() + =0. 

But 

-128 321 = 267 mod 397, 
-53 75 

and so, by the well-known theorem of Skolem (see, e.g., [17], [18]), there is at most 
one solution (M, N) which is clearly (0,0). In this case (u, v) = (0,0). Similarly, 
when (r, s) = (0,1), (1,0), (4, - 1), (- 2,4), we get the following systems in M, N, 
respectively: K2 + K3 =0 = K1 + K2 - 3K3; K2 0= K1 -3K3; -3K,-K2+ 
9K3 = O = - 3K2 - K3; 4K' + 3K2 - 12K3 = 0 = 3K3 + 4K2 with corresponding 
determinants 

-181 -1 - 46, -128 321 -81 
-92 144 - 36 -177 -381 

20 210 - 2189 -240 255 -99 
40 153 - 123 -79 -299 

Thus, by the aforementioned theorem of Skolem, (M, N) = (0,0) is the only 
solution in each case, and (u, v) has the value of the corresponding (r, s). Thus the 
solutions of (2.1) are ?(m, n) (1,0),(0, 1), (3, - 4),(1, - 1), (1, - 3) leading di- 
rectly to the previously mentioned solutions to (1.4) and (1.5). 

We give an alternative verification for the equation (1.5) to show that here one can 
give the solutions without necessarily having recourse to a computer. 

In Q(0) take as fundamental units E = 0(1 + 0)-' = 1 + 40 - 02 + 03, and 
0 = -1 + 3E2 + E3. Then E.4 + 2E3 - 3E2 + 1 = 0, and (1.5) can be written: 

Norm((m + n) - 2mE) = 1. 

Thus 
? ((m + n) - 2mc) = cUOv 

and putting u = 2p + i, i = 0, 1, v = 2p + q, there results 

+ ((m + n) - 2mc) = _,(-202)Poq = _i(I + 2)p 0q. 
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Now (1 + 2E)2 = 1 + 4(c + E2) and 06 = 1 + 4(-E + 2c2 + E3)mod 16. Put p = 

2P + r, q = 6Q + s, r = 0, 1, s = 0,1,...,5, so that 

? ((m + n) - 2me) 

i(1 + 2)r6s [1 + 4 ]+ [4P + 4Q + 4 ]E 

+ [4P - 8Q + 42()]c2 +?[-4Q + 42()]c3}3) 

In particular, the coefficient of - in -'(1 + 2_)ro, must be even, while the coefficients 
of e2 and e3 must be zero mod 4. Amongst the 24 possible triples (i, r, s) the only 
ones satisfying these requirements are (i, r, s) (0, 0, 0), (0, 1, 0). In the first ins- 
tance, it follows that 

P-2QA+4() + =0, 
- Q + 4( + = , 

while in the second instance 

3P-6Q+4()+ =0, 

2P-Q+4()+ =0; 

but 

1 O 2 I mod 2, and 3 -6 = I mod2, 
0 -1 1od,ad 2 -1 

so that, by Skolem's theorem, (P, Q) = (0,0) is the only solution in each case. Then 
(u, v) = (0,0 ), (2, 2), respectively, corresponding to ?(m, n) =(, 1), (- 1, 2). We 
remark that it seems difficult to apply a 2-adic method in the case of"(1.4). 

3. The Solution of Eqs. (1.6) and (1.7). Consider first the equation (1.7), and work 
in the field Q(0), 04 + 1802 -160 + 1 = 0. An integer basis is {l, 0, 0, Ow), where 
c = (1 + 02)/4, and a pair of fundamental units is (see ?6): 0, 7 - 80 - 20O. 
Then (1.7) is equivalent to 

?( - nO) = Ou,V. 

Put u = 2M + i, v = 2N +j, i,j =0 1, so that 

+ (m - nO) = 0 ci(l - 4c) + 4(11 - 130 - 30W)]N 

= 0idf{[I + 4.11N + 8( )] + [-4.13N + 8( )]0 
+ [-4M + 16()]w + [-4.3N + 16(1)]0w, 

where every term in brackets () is a polynomial in M, N with 2-adic integral 
coefficients. In particular, the coefficients of w and Ow in O'C' must be zero mod4, 
which forces (i, j) = (0,0 ), ( 1,0 ). If (i, j) = (0,0 ), then we must have 

-M + 4() + 09 =O 

-3N+4() + 0*=, 

and if (i,j) = (1,0), then 
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and so in both cases the appropriate determinant is odd and (0,0) is the only 
solution, giving (u, v) = (0, 0), (1, 0) and ?(m, n) = (0, ), (1, 0). Next consider 
(1.6). This equation is equivalent to Norm(m - nO) = 1, where 8' + 8 - 682 - 

88 + 9 0 O. Put S2 
- (1 + 92)/4; then 0 8 8- 8 - 18Q2 - 20Q, co -6 - 20 

+ 8S2 + 03sa and, moreover, in Q(8) Q(O) we may take as a pair of fundamental 
units 0, E =-e- I = 7-8O-2 lw =-1 + 2Q. Now 

? (m - nO) = 62M+iE2N+j i,j = O, 1, 

O'Ej[l - 4(2 + 28 + 8 m[l + 4(-l + e + Q - 20S2)]N mod 16. 

In particular the coefficients of 2 and 02 in 01E' must both be zero mod 4, forcing 
(i, j) = (0, 0). As usual, there results a system 

-M-2N+ 40 +* = O, 
N + 4( ) + * 0 =O 

and so (M, N) = (0,0) is the only solution, whence ?(m, n) = (1,0) is the only 
solution to (1.6). 

A simple alternative proof can be given involving machine calculation. Write (1.6), 
(1.7) in the form 

Norm(m - nO) = 1, 

Norm((m + n) - (m - n)8) =4. 

Since (m + n) - (m - n) = 2n + (m - n)(l - 8)) -Omod( - 8)), we can de- 
duce from (1.6), (1.7) equations 

+ (m -. nO) -luEv 
? ((m + n) - (m - n)0) (1 - 0)1quEV 

where q --SOE = 8 + 2S2, E =-1 + 2S2 is clearly a pair of fundamental units. 
An appropriate choice of prime in this instance (see remarks at beginning of Section 
2) is p 293. Working 293-adically, we obtain 

-138 q731I + 293(-89- 11-36Q + 402) mod2932 
= 1 + 2934,, say; 

E292 _1 + 293(193 - 768 + 252 + 858Q) mod 2932 

= 1 + 29342, say. 

Put u = 73M + r, v = 292N + s,-36 < r s 36,-146 < s s 146, so that 

4l38-M n ) = aqrEs(l + 29341) (I + 293N2), a lor -8 . 

In particular, the coefficients of Q and 0Q in arrEs must both be zero mod293, 
which happens for a = 1 only if (r, s) = (0, 0) and for a = 1 - 8 only if (r, s) 
(0,0 ), (1, - 1). Then we work as in Section 2 and prove in each case that the only 
possibility is (M, N) = (0, 0), whence +(m, n) (1, 0) is the only solution to (1.6), 
and ?(m, n) = (1, 0), (0, 1) are the only solutions to (1.7). 

4. The Solution of Eqs. (1.8) and (1.9). Consider (1.8); we work in Q(0), 
4- 602 - 160 + 25 = 0. Put X = (1 + 02)/4, so that {1, 0, w, 0O) is an integer 

basis, and from Section 6 a pair of fundamental units may be taken as E -6 + 0 
+ 6o + 20w, e2 = 1- 20 + 2X. Write (1.8) in the form 
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? (n - m0) - -2 Mg2N i,j = 0, 1. 

Observing that 

-2 = + 4(37-50-38w- 130w), 2= + 4(-3 + 7w-20w) 

and thus that the coefficients of w and Ow in e',d must both be zero mod 4, the only 

possibility is (i,j) = (0,0 ). Then as usual we obtain a system 

-38M+7N+4() +4 =0, 

-13M-2N + 4() + =0, 

with unique solution (M, N) = (0,0) corresponding to ?(m, n) = (0, 1). Next 

consider (1.9). This equation is equivalent to Norm(m - nE) = 1, with &4 + 16&3 

+ 42e02 + 32E) + 9 = 0. Put 2 = (1 + e2)/4; then 0 =-4 + 130 + 302 + 202, 
w = - 10o - 162 - i2 and in Q(E) = Q(0) the following may be taken as 

fundamental units: E= 2 + e, and E2 =-(ee2- = e + 22. Now (1.9) 
is equivalent to 

? (m - nO) = EEE ME2N, i,j , 1. 

We have -E2 = 1 - 4(1 + e + 2), -E2 = - 4(-2 + E) + 92 + 30Q2), and so 
the coefficients of 2 and 02 in E'E? must both be zero mod 4, forcing (i,j) = (0, 0), 

( 1, 0). In the former instance we get the system 

-M+9N+2()+* 0, 

3N + 2( )+ **=0, 

and in the latter instance 
-123N + 2( + 0, 

- M + 9N + ( )+ *=0, 

each system having the unique solution (M, N) (0,0) giving the respective solu- 

tions ?(m, n) = (1, 0), (2, -1). 
Remark. A p-adic treatment with p = 401 will also furnish a solution of (1.8) and 

(1.9), writing them in the form Norm(n - mO) = 1, Norm((m - n) - (m + n)0) 

4; but the details do not present any particular interest. 

5. Appendix 1: The Fundamental Unit in 9(p). Although in Section 1 (relation 

(1.2)) we do not actually need a fundamental unit but rather just an odd power 

thereof, it is of some interest, however, to prove that E = 1 - a is in fact fundamen- 

tal, since this corrects an error in Table 3 of Brentjes [5]. Here the field discriminant 

is given incorrectly as -4 - 83 and in fact the third element w of the corresponding 

integer basis given in the table must be substituted by (2 + 0 + 02)/4. The method 

for proving that E is a fundamental unit in Q(p) is based on the ideas of Ljunggren 

[13, Section 4]. This method has also been used in Finkelstein and London [9] and 

Tzanakis [20, Appendix A]. Since ( 1, p, a} is an integer basis, the algebraic integers 

of Q(p) have the form (a + bp + cp2)/4, a, b, c E Z, where 

(5.1) a + 2b a - 2c b + c-0 mod4, a 0 mod 2. 

If E is not a fundamental unit, then without loss of generality 

(5.2) XE=[(a+bp +Cp2)/4]f, = +1,n a2, 

where a, b, c are rational integers satisfying (5.1). 
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Let, in general, a', a" be the conjugates of a E Q(p). In view of (5.2) we have 

t t P P,,2 t ( a ) l 1/n 

I 
p P 

b 44 
/n 

Let D denote the determinant of the 3 X 3 matrix. Then 

(5.3) CIc < 4D 1/2{I1/IPn - pjI + 2 -'I 1Inp - PI) 

(5.4) |b| < 4D 1/2{IPII fItP" - PIn? 2IP'||?'| ' IP' - PI} 

Now I p1< 3.185, 1 p'1< 1.773 (and p" = p', the complex conjugate of p'), I p" - P' 1< 
1.556, Ip' - pI< 4.840, |?|< 2.832, | e'< 0.595, D = - 2 83, IDI ,2 - 36.441734. 
Now, from (5.3), 

IcI < 41DI- "2{kI'72 
1 

- p'j + 21p' - pI} < 1.35, 

and since we may suppose c < 0, it follows that c = 0 or - 1. Also, from (5.4), 

I 41DI -1/2 { PII,1/2IP - p'I + 2Ip' IpI - pI } < 2.80, 

so that b - 0 +l, ? 2. From (5.1) there is in addition the restriction b + c Omod 4, 
so that only the pairs (b, c) = (0,0 ), (1, 1) need to be considered, of which the first 
pair can clearly be rejected. For the second pair Norm(a + p - p2) - ? 64, and it is 
straightforward to see that only for a = 2 does the last relation hold. Then 
(a + bp + cp2)/4 e , which is impossible in view of (5.2). Thus e is a fundamental 
unit. 

6. Appendix 2: The Finding of the Fundamental Units in the Quartic Fields. We 
apply Berwick's method [1] and use the following result. Let Q(O) be a quartic field 
with negative discriminant and such that the minimum polynomial of 0 over Q is not 
of the form t4 - 2at2 + (a2 - mb2). Let 0', 0", 0" be the (algebraic) conjugates of 
0, with 0, 0' real and 0", 0" complex conjugates. Then a pair of fundamental units in 
the field Q(0) are any two of the three defined by 

(6.1) > 1 and minimal, Ie'I < 1, Ic"I < 1; 

(6.2) Je< 1, < '> 1 and minimal, e"I< 1; 

(6.3) 1 eI< 1, Ie'l < 1, e"jI > 1 and minimal. 
For the field Q(0) corresponding to (1.4) a pair of units e,, e2 is found using the 
relations (6.1), (6.3); for the field corresponding to (1.7) we use (6.3), (6.2); and for 
the field corresponding to (1.8) we use (6.2), (6.3). 

We give as an illustrative example the details of the calculation only fQr the first 
field; the calculations for the other two fields are more extensive yet do not present 
any particular interest. 

To find Es, we have the approximations 
0 = -0.74820, 0' = -0.34009, 0" = 0.54415 + 1.90625i. 

For the general unit - put - = x + yO + Z02 + W03; then we have to find ?, from the 
relations (taking 3 as an upper bound for -,): 
(6.4) 1 < x - 0.74820y + 0.55981z - 0.41885w < 3, 
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(6.5) - 1 < x - 0.34009y + 0.11566z - 0.03934w < 1, 

(6.6) - 1 < Re(e") = x + 0.54415y - 3.33769z - 5.77085w < 1, 

(6.7) - 1 < Im(E") = 1.90625y + 2.07457z - 5.23359w < 1, 

(6.8) Re(E")2 + )2 < 1. 

Now (6.4), (6.5) and (6.5), (6.6) give, respectively, 

(6.9) 0 < -0.40811y + 0.44415z - 0.37951w < 4, 

(6.10) - 2 < -0.88424y + 3.45335z + 5.73151w < 2. 

Then (6.7), (6.9) and (6.7), (6.10) give 

(6.11) - 0.40811 < 1.69331z - 2.85932w < 8.03311, 

(6.12) - 4.69674 < 8.41738z + 6.29791w < 4.69674, 

and (6.11), (6.12) give 

- 11.38826 < 34.73230w < 75.57078, 
and thus w -2,-1, or 0. 

If w =-2, then (6.12) forces z = 2, 1. Now if z = 2, then (6.7) forces y -8, 
(6.6) forces x - 1,0 and (6.4) is not satisfied; and if z = 1, then (6.7) forces 
y -7, (6.6) forces x =-5, -4 and (6.5) is not satisfied. Similarly when w =- 1, 
the only possibility that arises corresponds to the unit - 1 - 40 + 02 - 03, satisfy- 
ing all the inequalities. When w = 0, then (6.12) forces z = 0, and (6.7) forces y = 0. 
Thuse1 =-1-40 + 02 - 03. 

One finds e2 0 by exactly analogous computations which do not present any 
extra difficulty. Then el, E2 form a pair of fundamental units in Q(0), although it is 
actually more convenient to work with the unit- j12 1 + 0 instead of cl. 

Berwick's method is also applied for finding a pair of fundamental units in many 
quartic fields in [7], but an extensive use of a computer is made for this purpose. 
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